Postproduction processing of electrospun fibres for tissue engineering.

نویسندگان

  • Frazer J Bye
  • Linge Wang
  • Anthony J Bullock
  • Keith A Blackwood
  • Anthony J Ryan
  • Sheila MacNeil
چکیده

Electrospinning is a commonly used and versatile method to produce scaffolds (often biodegradable) for 3D tissue engineering.(1, 2, 3) Many tissues in vivo undergo biaxial distension to varying extents such as skin, bladder, pelvic floor and even the hard palate as children grow. In producing scaffolds for these purposes there is a need to develop scaffolds of appropriate biomechanical properties (whether achieved without or with cells) and which are sterile for clinical use. The focus of this paper is not how to establish basic electrospinning parameters (as there is extensive literature on electrospinning) but on how to modify spun scaffolds post production to make them fit for tissue engineering purposes--here thickness, mechanical properties and sterilisation (required for clinical use) are considered and we also describe how cells can be cultured on scaffolds and subjected to biaxial strain to condition them for specific applications. Electrospinning tends to produce thin sheets; as the electrospinning collector becomes coated with insulating fibres it becomes a poor conductor such that fibres no longer deposit on it. Hence we describe approaches to produce thicker structures by heat or vapour annealing increasing the strength of scaffolds but not necessarily the elasticity. Sequential spinning of scaffolds of different polymers to achieve complex scaffolds is also described. Sterilisation methodologies can adversely affect strength and elasticity of scaffolds. We compare three methods for their effects on the biomechanical properties on electrospun scaffolds of poly lactic-co-glycolic acid (PLGA). Imaging of cells on scaffolds and assessment of production of extracellular matrix (ECM) proteins by cells on scaffolds is described. Culturing cells on scaffolds in vitro can improve scaffold strength and elasticity but the tissue engineering literature shows that cells often fail to produce appropriate ECM when cultured under static conditions. There are few commercial systems available that allow one to culture cells on scaffolds under dynamic conditioning regimes--one example is the Bose Electroforce 3100 which can be used to exert a conditioning programme on cells in scaffolds held using mechanical grips within a media filled chamber.(4) An approach to a budget cell culture bioreactor for controlled distortion in 2 dimensions is described. We show that cells can be induced to produce elastin under these conditions. Finally assessment of the biomechanical properties of processed scaffolds cultured with or without cells is described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application

Objecttive (s): Polyvinylalcohol (PVA) is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinn...

متن کامل

Textile Reinforcement in Fibrin-based Tissue Engineerd Heart Valves.

Tissue-engineered heart valves (TEHV) are a promising approach to solve problems in currently used prostheses. Studies of fibrin based heart valves show promissing results. To overcome last shortcommings concerning the mechanical strength we develope a textile reinforcement.Two approches are tested in this study. One is a composite of manual placed fibres and an electrospun nonwoven layer. The ...

متن کامل

ELECTROSPINNING OF NANOCOMPOSITE FIBRILLAR TUBULAR AND FLAT SCAFFOLDS WITH CONTROLLED FIBRE ORIENTATION A.A.Salifu, B.D.Nury and C.Lekakou Centre of Materials, Surfaces and Structural Systems

Electrospinning was used in innovative electrospinning rigs to obtain tubular and flat fibrous structures with controlled fibre orientation with the aim to be used as scaffolds for biomedical applications, more specifically in the tissue engineering of vascular and orthopaedic grafts. Gelatine and hydroxyapatite (HA)-gelatine solutions of various compositions were tried and electrospinning of c...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Electrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional

Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2012